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FOURTH-ORDER APPROXIMATION FOR THE ROTATIONAL DISTORTION OF
STARS OF ARBITRARY STRUCTURE

Zdenek Kopal and M. Kamala Mahanta*

INTRODUCTION

In a previous investigation [1], hereafter referred to as Paper 1, a new method was
developed for establishing the shape and gravitational potential of an equilibrium config-
uration of arbitrary structure, rotating with constant angular velocityt whose free surface
constitutes an equipotential. This method, whose first approximation is well known under
the name of Clairaut's theory, is susceptible of extension to any desired order of accuracy;
in Paper 1 it was explicitly extended to the quantities of third order in superficial distor-
tion of the rotating configuration.

An application of this theory to the evaluation of the potential energy of the respec-
tive configuration required to ascertain the limits of its secular stability disclosed, however,
that for homogeneous configurations the errors inherent in a third-order approximation
are still too large to specify the limits of stability with satisfactory precision. Although
for centrally condensed configurations this precision is likely to be much higher, an ex-
tension of the accuracy of our procedure to terms of fourth order appears to be desirable.
The aim of the present investigation will be to accomplish this task and to generalize the
results of Paper 1 consistently to quantities of fourth order.

To do so in a minimum of space, the principal features of the method employed will
no longer be repeated herein; the reader desirous to get acquainted with them should con-
sult Paper 1. Moreover, all notations employed in the present investigation will be made
strictly consistent with those of Paper 1, so that no explanations need generally be given.
What we shall do will be merely to augment the requisite equations by fourth-order terms,
so that a development of the final results to be given in this report will be internally con-
sistent; their numerical applications to problems arising in astrophysics and planetology
will be left to future publications.

EQUATIONS OF THE PROBLEM

By a method developed in section III of Paper 1 (and by an obvious extension of
the expansions represented by Eqs. 4.2-4.4 of that paper), it is possible to show that if
the symbolic expression for the radius vector r' is written as

Normally at the Astronomy Department, University of Manchester, England.
tIt should be stressed again that this method remains equally applicable to variable angular velocity w(r, 0)

as well, provided only that the latter can be expressed in the form of a series factored by zonal harmonics
Pj(cos 0) of ascending orders.

Note: Manuscript submitted July 18, 1974.
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r = a{l + fo + f2P2(cos 0) + f4 P4(cos 0) + f6P6 (cos 0) + f8P8(cos 0) + ...}, (2.1)

it is possible to show that, correctly to quantities of fourth order, the coefficients E1 and
Fj(i = 0, 2, 4, 6, 8) introduced by Eqs. (3.35) and (3.36) of Paper 1 assume the forms

E0 f ja, P+{ a 2 [ 1 If22 2f2
E2 J aP __aa 2 10 105

50 2 1221

+50 f2 - f84 - -f22f4] da (2.2)

+= Ja P aa {f - -2 + f216 -3538 
_l 50f2 2> + 17 2t da 4 23

Ja P aa 2 4
35 385 2 255 f2

243 _ 60 35 1 5

+ 13737 f f 2] } dad (2.4)

a aa{a4 +77 f 15

25 -2t 14 2t + ;7 221] da, (2.5)

ca, a I r 1512 4 1715 2
£8 f J p =a Ia 8 7 1 5 f2 -25875

a ~ 1

ff50 + 741 d2]} da (2.6)

and

2



NRL REPORT 7802

a
F0 = pa2 da, (2.7)

0

F2 = p 2 + 7 2

693 f4 7 f2f4 + f77 f4]} da, (2.8)

ra a fr 7 r 54 2 108 3 1458 4F4 = J aa l f 4a 3f 2 + 77 f2 + soosf2
.0 _a 3 750

+486 2 120 270
1001 /4 7 + -143 f2f6

+20829 f2]c da, (2.9)
5~005 f 2 jj]

F6 = a{ f23 + 144 f2 + 80 f42

0
11 U~4 +55 f2 f6 + I1l f2 f4] da, (2.10)

F8 a P aa {all[f8 + 1432 f2 + 1245 f42

13 f2A6 + 143 f2 4]} Ida (2.11)

as a fourth-order generalization of Eqs. (4.13)-(4.20) of Paper 1, with

fo = -1I f22 _ 2 f23 - f4 -_ f2f4 (2.12)

in order to render the mass of the rotating configuration (FO) constant correctly to quan-
tities of fourth order.

As the next step of our analysis, we expand again the total potential 4(r') = U + V +
V' in a Neumann series in terms of the spherical harmonics PR(cos 0) and equate their
coefficients oj to zero for j = 2, 4, 6, and 8. In particular, since the disturbing potential
V'(r') = (1/2)w 2 r'2 sin2 0 due to centrifugal force can be expanded in a series of the
form
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V,,r 1 2a2 2 92 423r _ =-co a l -- 52 35 f2 + -'2 f-f2f4J

--c2a2 1- f2 - 9 f2 + 26 f23

3 72352 105f

+4 20 1
74 -77 Tf2f4J P 2 (COS 0)

2 2 2 - 18 3_ 57
3 ta3 5 f2 - 77 f2 1 7 5 f2 77 4

5005 + 143 f6} P4 (cos 0)

_23 2a2 79 22 + f4 - f2f4 - g f6} P6 (CoS0)

32a,2 {143 f2f4 + 28 f6} P8 (COS0) + *-- (2.13)

Eqs. (4.21)-(4.23) of Paper 1 can be generalized readily with the result that, correctly
to quantities of fourth order,

a2 E2 f + 4 2 16 3 4 24
l1 + f 7 7f2+ + 35f + 7f2f4J

+a4E4 {8 >2 +72 2 + 400f4}

Fo {f2 _ 2 [2 +29 3
a T> f 35 f

454 4 100 2 4 +36 2

1 1 5 5 f2 - 93 f T2 - T f2f4 +77 f2f4j

+ F2 1 6 _ 2 6 111 22 _1242 f23 6 144 l

5a3l 712 3512 385 [2 - f4 +-7-f 2 f4 J

F4 r10 500 _ 180 2l
9a5 l7 f2 + 93 f4 --7 f2

C=2 a 2 {j 10 f2 _ 9 2 26 3 4 20 2
l2irG 11 7 35 10[ 5 7~[ 77~ ff 4f (2.14)
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a2 E2 {6 1 36 3 40 90 3578 l385 ' [2 + '[4 + 46 500 2 f5 35- f2 + 385 f2 - 2 + 77 [2 + +1 5005 

a 2 E4 + 80 1346 2 648 l a6E6 27 0 [
+9 1+77 f2 + 1001 f2 +1001 14 13 r14-3 s

*F0 [18 10 4To f282 _ 108 f3 +16902 f4 _
+a 5 385 25025 42 f4

*40 90 7369 2 162 21
77 f2 f4+ 143 f2 f6 -5005 f2f4 + 1001 f4

F2 r54 648 2 + 122688 3

5a3 35 [2 385 + 25025 [2

21468 60 +135 

5005 f2[4 + 77 + 143 16J

F4 100 6368 2 810 F6 [315f
+ l- 77 + 1001 [2 1001 [4j 13a7 1143[J

C2a2 118 _ 9 42 18 3
6irG 135 f2 77 2 175 f2

77 4 43 6 + 500 f 2[ 4} ' (2.15)

a2E2 {10l2o1 2
aE 101 f4 + '5 46 + '7 f2 + '7 f2f4l

g4E4 2 + 77 2 + 80 1 aE 84
* [9 I 2 + 7 [2 99~ [4 +13 5fl

F0 [18 3 72 4 10
a 7 f2 3852 -1f24

* 4 22 _20 2 28 ff+77 224 _99 t4 + f6 -55 26

F2 [108 2 144 3 15 + 216 42 l

+ 5a3 i 2 -7 72 - -l [2[4 55 6J

F4 [25 + 100 _ 270 (
9a5 {-l f 2 99 f4 -77 f2 f4} (2.16)

Continued
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+F6 98
+ 13a7{1- 9_55 f2 4

- 6irG 77 f2 +.1j[4 -[77 24 [655 (2.16)

and

a2E2 f 56 56 } a4E4 { 168 2 +1960 I
5 1-65 16 +f4-3- f2f4l + -9 1l43 f2 +1287 t41

+a6E6 { 168 + a8E8
+13 65 [2l 17

+ a 72 4 84 2 490 2 56 }
a [1 2 -1 [2[f~4 + 1 28-7- f~ ~-i~-[2[6 -8

F2 |144 3 336 + 84 |

5a3 143 f2 143 [24 65 6J

F4 420 2 _2450 1F8

9a 5 2143 -212857 J4 13a 7 65 12 17a 9

6 irG {6[5 6 + 143 2f4 -(.

Next, let us eliminate from the foregoing equations the quantities E2 j(j = 2, 4, 6, 8)
wherever they are multiplied by the [j s. We may note that, correctly to quantities of
first order, E2 can be solved for from Eq. (4.24) of Paper 1; Eqs. (4.25) and (4.27) lend
themselves for the same purpose, correctly to quantities of second and third order.
Moreover, Eqs. (4.26) and (4.28) can do the same for E4 as can lastly Eq. (4.29) for
E6. By appropriate insertion from Eqs. (4.24)-(4.29) of Paper 1 in Eqs. (2.14)-(2.17)
of this report, we can rewrite the latter in the following alternative forms:

a 2 E2 _ F2 f 2 Fo

5 5a3 a

Fo 6f22 + 748 f23 190028 24 16 f2f4
a 7 2 245~[ 56595 2 7~[f

+2308 2 _500 2]
+539 f2 4 693 fol

F2 (1o 338_
+-3 {1- [2 - 8f2 (2.18)

Continued
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+123440 3 + 10 3320
11319 [2 7 f4 - 539 [2[4J

2988 2 100 1
_ 539 [2 + -7 [4

2[2 + 6[2 _- 8 f + 20 f2 f}

f4Fo
a

= Fo |_
a 

54 2 6696 3 _ 24745554 4
5[2 + [2695 - 2697695 [2

160 4714257 2f_ 10 - 450 ' f f
77 f2f4 + 385385 [2 4 1001 4 143 [26J

F. |18 100 _ 2988 2
6a3 1 7 f2 +77 f4 539 f2

225 1009016 5131332 31
14j3 [6 - 77077 [2[4 + 207515 f2

F4 1180 - 6865524
9a5 77 [2 385385

2 + 1458 
[2 +1001 '4I

+ F6 {11 f2l
13a 7 11-1 

+ c2a [54 2
1 2 ,.G 13-5 

5184 f 23 2 200 f[1

2695 2 -24 +77 42 4 1

a6E6 + F6 _ 6Fo

13 13a 7 a

Fo [216 4 3 _ 39276 4 40
a | 771 2 5929 [2 l 2[4

+8630 2 100 2 28
847 f2 99 [4 -T f246j

F2 (25 _ 9780
i5a 3 1 [4 847 f2 4

7

9a IT7 f2

12+_G I

a4E4
9

F4

9a7

(2.18)

(2.19)
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450 2 100404 3 14 1
77 [2 + 5929 2 + I

F4 (45 - 10674 f2 + 20 |
9a5 11 2 847 2 11 4

13a7 {1 55 }

__2a2 -50 f23 - 2[6} , (2.20)

and

a8E8+ F8 _ [8Fo
17 17a9 a

Fo _ 72 4 140 2 2450 2 56 f
a l132 + 13 1287 } 3

F2 f 144 3 1680 28
5a3 11 2 143 [2f4 + 13 f6l

F4 (490 1764 21 + F6 [28 | (2.21)
9a5 lT43 f4 7M4 f2 13a 7 F 5f2l 2

generalizing Eqs. (4.27)-(4.29) of Paper 1 to an accuracy of fourth order.

To proceed further, multiply the foregoing Eqs. (2.18)-(2.21) by acj, (j= 2, 4, 6, 8)
so as to render the coefficients of E£ on their left-hand sides constant, and differentiate
with respect to a. The derivatives of F; are merely equal to the integrands on the right-
hand sides of Eqs. (2.7)-(2.11); those of Ej are equal to the integrands in Eqs. (2.2)-
(2.6) taken with the negative sign (since the independent variable a occurs in the lower
limit of the definite integrals for E.). If subsequently we eliminate the terms Fn for
n # j (factored by small quantitiess with the aid of Eqs. (4.24)-(4.29) of Paper 1, valid
to the accuracy of lower orders and similarly treated, it is possible to show that, cor-
rectly to the accuracy of fourth order,

F2 (a) = a2{ (3 - 712 )f 2 + 2 (6 - 2172 +2)f2

- 5 (51 + + 1022r + 47732)f2

- u8 ss (231 - 110712 + 517q2 - 66,q2 - 212q4)[24 (2.22
Continued
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+47 (13- 72 -774 +772714)[2[4 + 4 (48- 46772 + 3

+6772714 - 9772714 - 2714)f2[[4

693 (20 -2774 + 72>f4 }Fo

67rG {72f2 + 2 (2- 712)72f2

35 (54 + 5r%2 + 10772 + 4I2)[2

7(7- 72 - 74 + 712714)'24} . (2.22)

F4 (a) = a4 {(5 -714)f 4 + 1 (6 - 42 +712r

385 (27- 17172 + 9272 - 37123)2

250825 (3804 - 1052712 + 874,q2 - 12471 - 367i74)f2

+ 4 (13 - 2712 - 2714 + 712q14)[2f4

+ 1 (40827 - 28750%72 - 717974

+362712 + 8732712714 - 4366712q4)f2f4

+ 93 (24 - 272 - 2716 + 712716)f2[6

1001 (20 -4714 + 74fl4 }Fo

+w 2a7 ( 8)2 2
-{(2 -714) f4 + 5 (3 + 42 -712)[2

+385 (18 + 17712 - 9712 + 3712)[2

- (4 - 2712 - 2714 + 77274)[2f4} I (2.23)

9
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F6(a) = a6 {(7 - 716)f6 + 77 (15 - 1172 + 5q2 - 713) P2

+ 385 (40 + 28172 + 17712 - 8 2 + 2q2)[24

+10 (13- 3172 - 3714 + 712714)f2f4

+ 2 (720- 226712 + 45712 - 134714 + 9012714 - 27q2 4)f2[4

+-9° (20- 674 + 72)f42 + 28 (24 - 3712 - 3Q6 + 2 76 )f2f 6 }FO

w2 a9 {(4 -6)f6 - 18 (13 + 1171 - 5,q2 +73)f6 irG 716 7 7 2 2 22

* (1- 372 - 3714 +7274)f2f4} (2.24)

and

F8 (a) = a8{(9- q8)f8 + 56 (24- 4712 - 4716 + 72716)f2f6

+490 12\ 42
+128°7 (20 - 8'q4 + 7742f

+143 (112 - 40712 + 7,2 - 24N4 + 1471274 - 3 P74)[ [4

+7125 (42 - 32172 + 17,q2 - 673 +2 2))f4l Fo (2.25)

where FO continues to be given by Eq. (2.7) and where (as in Paper 1),

a afa (2.26)

denotes the logarithmic derivative of the individual amplitudes f[ on the right-hand side
of the expansion Eq. (2.1).

As the last step of preparatory analysis, let us equate Eqs. (2.22)-(2.25) for Fj(a)
with Eqs. (2.7)-(2.11) and differentiate both sides of the resulting equations for j = 2, 4,
6, 8. The outcome discloses that, correctly to quantities of fourth order, the amplitudes
f[(a) of jth harmonic distortion should satisfy the differential equations

10
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a2[I + 6D(af2 + f2) - 6f2

= 2 {272(q2 + 9) - 9D 2 (722 + 2)}f2

- 3-5 { 7n2 + 337 + 180712 + 66 + 3D(271 - 1572 - 2772 + 5)} f[

+ 4 {2(172174 + 15712 + 84) - 3D(3772 714 + 3R2 + 3714 - 7)} f2f4

3 { 2 (44 7q + 397712 + 2772 - 258)

-3D (44%2 + 19572 - 6672 - 136)} f2

+ -4 { 2(317274 - 3774 + 47,q2 - 13772 - 11)

-9D(3772n74 + 6712714 + 3i12 - 34q2 + 474 - 10)} [2f4

+ 6°3 {2q44 + 37) - 3 D(3,q4 + 674 - 14)} f4

+3 (1-D(r 2+1'f2 + 7 171 +24[2

+ (273 - 1571 - 27712 +2

+ 2- (312714 + 3712 + 3714 - 7)f2f41

+ 6 (2)2( -D) {(72 + 1)f2 + 71 2(72 + 2)f2
35 2~p 21- D)7%n + 5)f2},(.7

a2[4' + 6D(af3 +2f4) - 20[4

3 1 1272(2 + 2) - 3D(3712 + 6712 + 7)3 [2 (2.28)

1'~ / Continued
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+ 36 2(5 (2 -16Q2 + 3) - 3D(3,q3 + 9n2 + 12% + 4)}f23
~~ 1 ~~ 71~) \1 2 2 1 12

+ 40 {(2q274 + 23712 + 9714) - 9D(172 174 + 72 +74)}f2f4

* 18 J 2(-291742 + 1006812 +1020)
+25025 2. 10671

-3D(429q24 + 858123 + 2207q2 + 114472 - 2656)} f2

- 2 { (202,q2 4 + 766q2q4 - 16739712

+24834714 + 111940172 + 76386)

+3D(2183,q2'q4 - 164071274 + 2183712 - 956072 - 2995714 -181)} f2f4

+ 0121 2716 + 2872 + 416) - 3D(31726 + 3n76 + 3n72 - 1 1) f2f61431 ~6 2

+162 /
12i74(r + 30) - 3D34 + 674 - 7) f4

3wJ2 l-D9 2 2
+ irGp- (1 - D){(N + 1) f4 + 35 (32 + 6% + 7)f2

* 188 3 + 9712 +1272+4)[23 + (7 (q 2 q4+ n2+74) 2fI4

385 (3w7\2 21 ± 327

+6 (1 -D){(9 4 )f3 + 6q2 + 7)f2J (2.28)

6D(af6 + f6) - 42f6

77 {4(3 - 2)(72 +2) - 3D( 23 + 3,2 + 15q2 + 5) f23

+ 1 22(71274 + 672- 74) - 3D(37?2714 + 3172 + 3N4 + 11)}f2f4

+3385 2 (83712 + 2252 + 150) - 3D(972 + 56 2+ 104)}[ f2

+ 7 2 (142-16772-3174 + 59n22 + 137274) (2.29)
Continued
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-9D(9712714 + 18712714 + 972 + 1014 + 6272 + 24)}f2

+ 25 {2n2q6 + 6716 + 45 - 9D( 2 7 6 + 712 + 716)} f2f6

+ {2714(44 +19)-3D (34 + 64 + 4)} f4

3w2 (1- D) 6 +1)f6 + - (372714 + 32 + 374 +11)f2f4

+ 77 (2 + 3%2 + 15712 + 5)f23}. (2.29)

and

a2f8' + 6D(afg +f8 ) - 72f8

144 {(7712 + 2n2 - 24) - 3D(672 + 8)}f4

71 2 28
143 {2 (88 + 272 + 6714 +2 - 8 274)

-3D(3712l7 4 + 6712714 + 372 + 1514 + 54n72 + 23)} [V[4

+ 56 {2(152 - 376 +q2q6) - 3D(3q2q6 + 312 + 3q6 +15)}f2f6

*490 r 3,- 2 2 1n213[2
+ 1287 { 2714 (Iq4 + 4) - 3D 3n4 + 6N4 , (2.30)

where primes on f; denote differentiation with respect to a and where we have abbreviated

p _3 |a2 da D --. (2.31)
03 pp

The boundary conditions necessary for the construction of the particular solutions
of Eqs. (2.27)-(2.30), which are to represent the amplitudes fj(a) of the individual har-
monics on the right-hand side of the expansion Eq. (2.1) for r', are imposed partly at
the center and partly at the boundary of our configuration. As, at the center, all the
[i's are to be a minimum; the necessary conditions for this to be true imply that

[j(0) = 0, j = 2, 4, 6, 8, .... (2.32)

On the other hand, at the boundary a = a, all the Ej's, as given by Eqs. (2.2)-(2.6),
vanish; for j > 0 the Fj's continue to be given by Eqs. (2.8)-(2.11) or Eqs. (2.22)-(2.25),

13
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whereas for j = 0, 47rFO(a,) represents by Eq. (2.7) the total mass ml of our configura-
tion. Therefore, inserting Eqs. (2.22)-(2.25) in Eqs. (2.18)-(2.21), we find that for
a = a,

2f2 + al,2 + [ L2

= 27 (72 + 3Q2 + 6)f2 - 35 (2 +15+1 + 3 n2 + 38)f2

+ 2 (2712714 + 3172 + 3714 + 26)f2f4

+ 1155 (-42712 + 342723 + 609712 + 1175712 + 1258)f2

- 77 (9?72Q4 + 24712714 + 17714 + 12%2 + 7672 + 192)[2f4

+ 10 (2 + 3n4 + 20)f4

2 w2a '\f 21 2
*3 2 (Gin) (712 + 2 - 2712 + 6712 + 5 )f2

+ 34 (2 71 + 157q + 30712 + 47)f23

- 7 (27274 + 3n72 + 3714 + 29)f2f4}, (2.33)

4f4 + a, f4

352 + 2)(72 + 3)f2

386 (32 +182 + 442 + 54)f23

7720 (2712714 + 5172 + 5714 + 26)f2f4

+ 2510825 (367714 + 3427713 + 12167712 + 2118572 + 22278)f[4

- (4366 2q4 + 2347071274 + 3228974 (2.34)
505-5 ~~~~~~~~~~Continued
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+ 6730122 + 60952712 + 171744)[2f4

45 (2712716 + 5172 + 5n76 + 48)f2f6

+ 162 (1 51
Ioo (7142 + 5714 + 20)f42

+2 (0{(7 + - 9 (271-+qo2 +21)f2

+ 385 (3 13+ 1872 + 4471 + 72)f3
385 2 2 2 /2

-77 (27274 + 5R2 + 5714 + 35)f2f4}. (2.34)

6f6 +alf6

= - 3. (2 + 8,q2 + 24712 + 24)f2

+5 (2n2n4 + 7172 + 7714 + 26)f2f4

+ 33865 (2742 + 1871% + 69772 + 197%72 + 144)[2

-2 (27, 274 + 144'72714 + 72q2

+46072 + 251M4 + 1152) 2[4

+554 (2712716 + 772 + 7716 + 48)f2f6

+ 0(4+ 7q4 + 20)f4 +3 -)(6 + 9)f6

+77 (. 2 + 8%2 + 2472 + 39)f2

5- (271274 + 712 + 7714 + 41) f2f4} (2.35)

and

15
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8f8 + alf8

- 72# (714 + 1173 + 61n27 + 12172 + 11)[24

_ (371274 + 2071274 + 10°72 + 7412 + 4174 +160)f2[4

+658 (271276 + 9%2 + 9q6 + 48)f2f6

1287 (74 + 4)(N4 + +)f4 (2.36)

SOLUTION OF THE EQUATIONS

A construction of the requisite particular solutions of the simultaneous Eqs. (2.27)-
(2.30) subject to the boundary conditions Eqs. (2.32)-(2.36) can be accomplished, as in
Paper 1, only by successive approximations in the following manner. Within the scheme
of a first-order approximation, Eq. (2.27) reduces to the homogeneous equation

a2f'2 + 6D(af2 +f2 ) - 6f2 = 0 (3.1)

for f2, where D continues to be given by Eq. (2.31). The function D(a) depends only on
the equilibrium structure of the undistorted configuration and will generally be known to
us only in numerical form. By definition, however, D(O) = 1, and in the proximity of
the origin can be expanded in a series of the form

D(a) = 1 - Xa2 + , (3.2)

even powers only occurring on the right-hand side on account of spherical symmetry of
our configuration in its undistorted (nonrotating) state.

If so, however, Eq. (3.1) clearly admits, in the proximity of the origin, of a solution
varying as

[2 = k2 (1 + 3 Xa2 + ...), (3.3)

containing likewise only even powers of a on its right-hand side k2 being an arbitrary
positive constant. Integration of Eq. (3.1) can then proceed (numerically or otherwise)
until a boundary is reached at which a = a, such that D(al) = 0 and where, by Eq.
(2.33), the surface values of f2 and af2 should fulfill the algebraic equation

2f2 + a1[2 + 3 (si) 0
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to quantities of first order in superficial distortion. On account of the homogeneous
nature of Eq. (2.1), the values of f2, as well as resulting from our integration, are pro-
portional to k2 ; if so, the algebraic Eq. (3.4) valid for a = a, can then be used to specify
the value of the nondimensional parameter w2a 3IGmi corresponding to the initially
adopted value of k2. Conversely, should we wish to obtain the values of f[(a) corre-
sponding to a specific value of W2a 3/Gml, our solution, started with an arbitrary value
of k2 (say, k2 = 1), should be accordingly scaled down at this stage.

With a first-order approximation to f 2(a) thus in our hands, we can now proceed to
the second-order approximation, which consists of finding a solution of the equations

a2f2' + 6D(af2 + f2 ) - 6f2

2 {2712(2 + 9) - 912 (n 2 + 2)1

+ 7Gp (1 - D)k72 + 1) f2 (3.5)

and

a2f[4 + 6D(af4 +f4) - 20f4

18 {222(12 + 2) - 3D(3n22 + 672 + 7)}[2, (3.6)

subject to the boundary conditions requiring that at the center

f2(0) = [4(0)= 0, (3.7)

while on the surface a = a1 ,

2f2 + f2 a, (Gml f2 7 1 2 67 + 121 2 + 5)5f[2, (3.8)'2+a[ 3 ~ wGM _ 2 + 3\G l~ 

and

4f4 + alf4 = (712+ 572 +6)[2- (3.9)

As Eq. (3.5) is independent of f4, its solution satisfying Eq. (3.7) can be expanded
near the origin in a series in ascending even powers of a. If, moreover, we note that

rG3 = p (r )' (3.10)

PC

where pC p(O) and, consistent with Eq. (3.2),

17
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P = 1 -1a2 + .. ,(3.11)
Pc 2

we find that, correctly to terms of the order of the squares of superficial distortion,

[2 = k2 {1 + 3 (1 + V)1a2 + *3 (1 - 151 v) X2a4 _ 4k2 X2 4 + ...}, (3.12)

where

V=2rGp- (3.13)

denotes a constant.*

Moreover, the structure of Eq. (3.6) for f4, solved in a similar way [2], discloses
that near the origin

f4 = k4 a2 {1 + 18 Xa2 +

+ 27 k2 {1 - 8 2a4 + 8 k2 X2 a4

+ 156 k_1(1 + v)X2a4 + ...}, (3.14)

consisting of two parts: the first (factored by k4 ) represents the "complementary func-
tion" of the homogeneous version of Eq. (3.6) with its left-hand side equated to zero,
and the second (factored by k2) stands for a "particular integral" arising from a non-
vanishing right-hand side. The constant k4 introduced through the complementary func-
tion is new, and its value must be specified (after integration has been completed) from
the boundary condition Eq. (3.9), just as k2 needs to be recomputed from Eq. (3.8).

The foregoing example makes it clear how to extend this procedure to solve for
each amplitude fj(a) of jth harmonic distortion to the requisite degree of accuracy. The
structure of the differential equations of the form of Eqs. (2.27)-(2.30) governing these
makes it evident that near the origin (a = 0) the complementary function of each fj will
vary as kjaJ- 2 , and its particular integral will be factored by ki/j2. In more specific
terms, if we set, by definition,

f2(0) = k 2 , (3.15)

it follows from the structure of Eqs. (2.27)-(2.30) in which qj(O) = 0, that

*Strictly speaking, one should still augment the right-hand side of Eq. (3.12) by quantities arising from pos-
sible biquadratic terms on the right-hand side of Eq. (3.2) or (3.11) which are not spelled out explicitly in
the latter, their inclusion is left as an exercise for the interested reader.

18
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27 2 108 3 90072 4 7583_
[4(0) 35 f2 (0) + 2695 O() - 175175 M2(0) + 350 [(5o[40)

135 243 2

-T f2(0)f6(0) - 1001 f4()

= 27 k2 + 4 ks + 131k + k 4 (3.16)

35 9 129 2 020 

[6(0) = 6 f2(0)f4(0) - 154 [85(0) [9(0) + 2297 f4(0)

-34 f22(0)f4(°)

= 45 k3 + 111 k 4 + (3.17)
77 1 2 175 2 -,(*)

and

[8(0) 7865 f2(0) - f22(0)f4(0) + 8[ f[ [�(0) 1310 [(0

= 16433 k42 + ........ 1 (3.18)

correctly to quantities of fourth order; the lowest nonzero derivatives of the fj (a)'s which
do not vanish at the origin are

f2[ (0) = 6 k2 (1 + v)X, (3.19)

and for j > 2,

(.j-2)(o) 2)!kj, 4, 6, 8, (3.20)

The constants kj(j = 2, 4, 6, 8, ... ) constitute the "eigenparameters" of our problem,
and their values must be determined with the aid of the boundary conditions Eqs. (2.33)-
(2.36) valid at a = a,. Inasmuch as the right-hand sides of Eqs. (2.27)-(2.30) governing
fj are known algebraic functions of f2, f4, ... fj-2, the solution of the entire system evi-
dently lends itself to a solution by successive approximations: first solving for f2 to ac-
curacy of first order; next solving for f2 and f4 to quantities of second order; then con-
tinuing until a solution for the fs accurate to jth order of accuracy has been established.
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